U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Ascorbic acid (vitamin C) is a water-soluble vitamin. It occurs as a white or slightly yellow crystal or powder with a slight acidic taste. Ascorbic acid is an electron donor, and this property accounts for all its known functions. As an electron donor, ascorbic acid is a potent water-soluble antioxidant in humans. Ascorbic acid acts as an antioxidant under physiologic conditions exhibiting a cross over role as a pro-oxidant in pathological conditions. Oxidized ascorbic acid (dehydroascorbic acid (DHA) directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas ascorbic acid did not have this effect. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling. Vitamin C is recommended for the prevention and treatment of scurvy. Its parenteral administration is desirable for patients with an acute deficiency or for those whose absorption of orally ingested ascorbic acid (vitamin c) is uncertain. Symptoms of mild deficiency may include faulty bone and tooth development, gingivitis, bleeding gums, and loosened teeth. Febrile states, chronic illness, and infection (pneumonia, whooping cough, tuberculosis, diphtheria, sinusitis, rheumatic fever, etc.) increase the need for ascorbic acid (vitamin c). Hemovascular disorders, burns, delayed fracture and wound healing are indications for an increase in the daily intake.
Cyanocobalamin (commonly known as Vitamin B12) is the most chemically complex of all the vitamins. Cyanocobalamin's structure is based on a corrin ring, which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Cyanocobalamin is naturally found in foods including meat (especially liver and shellfish), eggs, and milk products.Vitamin B12 is essential to growth, cell reproduction, hematopoiesis, and nucleoprotein and myelin synthesis. Cells characterized by rapid division (e.g., epithelial cells, bone marrow, myeloid cells) appear to have the greatest requirement for vitamin B12. Vitamin B12 can be converted to coenzyme B12 in tissues, and as such is essential for conversion of methylmalonate to succinate and synthesis of methionine from homocysteine, a reaction which also requires folate. In the absence of coenzyme B12, tetrahydrofolate cannot be regenerated from its inactive storage form, 5- methyltetrahydrofolate, and a functional folate deficiency occurs. Vitamin B12 also may be involved in maintaining sulfhydryl (SH) groups in the reduced form required by many SH-activated enzyme systems. Through these reactions, vitamin B12 is associated with fat and carbohydrate metabolism and protein synthesis. Vitamin B12 deficiency results in megaloblastic anemia, GI lesions, and neurologic damage that begins with an inability to produce myelin and is followed by gradual degeneration of the axon and nerve head. Cyanocobalamin is the most stable and widely used form of vitamin B12, and has hematopoietic activity apparently identical to that of the antianemia factor in purified liver extract. Parenteral (intramuscular) administration of vitamin B12 completely reverses the megaloblastic anemia and GI symptoms of vitamin B12 deficiency.
Status:
Investigational
Source:
USAN:FOSBRETABULIN TROMETHAMINE [USAN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Combretastatin A4 is a vascular disrupting agent (VDA) that targets tumor vasculature to inhibit angiogenesis. Combretastatin A4 is a tubulin-binding agent that binds at or near the colchicine binding site of β-tubulin and inhibits tubulin assembly. This tubulin-binding agent was originally isolated from an African shrub, Combretum caffrum. Combretastatin A4 is cytotoxic to umbilical-vein endothelial cells (HUVECs) and to a range of cells derived from primary tumors and these cytotoxicity profiles have been used to assess several novel analogs of the drug for future development. Combretastatin A4 has antitumor activity by inhibiting AKT function. The inhibited AKT activation causes decreased cell proliferation, cell cycle arrest, and reduced in vitro migration/invasiveness and in vivo metastatic ability. Several studies in mice have shown that a single administration of combretastatin A4 (100 mg/kg) does not significantly affect primary tumor growth. However, repeated administration (12.5 – 25.0mg/kg twice daily) for periods of 10 – 20 days resulted in approximately 50% retardation of growth of ectopic Lewis lung carcinoma and substantial growth delay of T138 spontaneous murine breast tumors. In clinical studies, Combretastatin A4 has been well tolerated in patients at doses up to 56 mg/m2, following a protocol of five daily 10-minute intravenous infusions every 21 days. The disodium combretastatin A4 phosphate prodrug is currently undergoing clinical trials in the UK and USA.
Gomisin A (BESIGOMSIN/GA) one of the major dibenzocyclooctadiene lignans isolated from Schisandra chinensis Baill, has proved to possess a variety of pharmacological effects. It has been found to promote hepatocyte growth factor, limit lipid peroxidation, and inhibit apoptosis in acute hepatic injury animal models. Besigomsine also acts as an anti-inflammatory by preventing the release of arachidonic acid in macrophages in vitro. Laboratory evidence suggests that Besigomsine may have anticarcinogenic effects. Chronic administration of Gomisin A had an antihypertensive effect in AngII-induced hypertensive mice. Gomisin A may exert neuroprotective effects by attenuating the microglia-mediated neuroinflammatory response via inhibiting the TLR4-mediated NF-κB and MAPKs signaling pathways. Also it induces marked protective effects against hepatic and renal injury induced by CCl(4) exposure through differential regulation of the MAPK signal transduction pathway.
Status:
Investigational
Source:
INN:guamecycline
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Guamecycline, a tetracycline derivative was studied in patients with broncho-pulmonary diseases and for the treatment of acute pneumopathies. However, information about the current use of this compound is not available.
Status:
Investigational
Source:
NCT00000244: Phase 2 Interventional Completed Opioid-Related Disorders
(1994)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Status:
Investigational
Source:
INN:adrogolide
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Adrogolide is a chemically stable prodrug of the dopamine D1 receptor agonist A-86929. Adrogolide is rapidly converted in plasma to A-86929. A-86929 has high affinity and functional selectivity for the dopamine D1 receptor. Adrogolide has been in phase II clinical trials for the treatment of Parkinson's disease and cocaine abuse. However, this research has been discontinued. The adverse events associated with its use of adrogolide were of mild-to-moderate severity and included injection site reaction, asthenia, headache, nausea, vomiting, postural hypotension, vasodilitation, and dizziness.
Status:
Investigational
Source:
NCT04638387: Not Applicable Interventional Terminated Osteoarthritis, Knee
(2020)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Withaferin A is one of the most bioactive phytoconstituents of Withania somnifera, a well-known herb in Ayurvedic medical tradition of India. Due to the lactonal steroid's potential to modulate multiple oncogenic pathways, Withaferin A has gained much attention as a possible anti-neoplastic agent. Systematic research on the evaluation of anticancer activities of withaferin A was started around the 1970s. Since then, a large number of studies have demonstrated the ability of withaferin A to suppress the in vivo growth of various human cancer cells’ xenograft tumors as well as experimentally induced carcinogenesis in different rodent models. It has being reported that withaferin-A reduced the growth of human prostate cancer (PC3) cells tumor xenograft in nude mice by blocking the tumor angiogenesis and inducing intratumoral apoptosis. According to this study, i.p. administration of withaferin-A caused regression of implanted tumor cells by decreasing the expression of angiogenesis marker CD31, inducing the expression of proapoptotic protein Bax, and activating caspase-3 via inhibition of nuclear factor-κB (NF-κB) signaling pathway. In a separate study, intratumoral administration of withaferin-A arrested PC3 cells’ xenograft tumor growth in mice by inducing tumor cell death via upregulation of prostate apoptosis response-4 (Par-4). Anticancer activity of withaferin-A has also being demonstrated for gynecological cancer, melanoma, thyroid, gastrointestinal and other types of cancer. Mechanistic basis of the anticancer effects of withaferin-A includes: (1) reinforcement of cellular antioxidant and/or detoxification system; (2) suppression of inflammatory pathways; (3) selective inhibition of tumor cell proliferation and induction of apoptosis; (4) suppression of tumor angiogenesis; (5) blockade of epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastasis; (6) alteration of tumor cell metabolism; (7) immunomodulation; and (8) eradication of cancer stem cells.
Status:
Investigational
Source:
NCT00002243: Phase 1 Interventional Completed HIV Infections
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Calanolide A is a new non-nucleoside reverse transcriptase inhibitor (NNRTI) originally extracted from a tropical tree (Calophyllum lanigerum) in the Malaysian rain forest. Viral life-cycle studies indicate that calanolide A acts early in the infection process, similar to the known HIV reverse transcriptase (RT) inhibitor 2', 3'-dideoxycytidine. In enzyme inhibition assays, calanolide A potently and selectively inhibits recombinant HIV type 1 RT but not cellular DNA polymerases or HIV type 2 RT within the concentration range tested. Phase I studies have found that calanolide A is well tolerated. Consequently, it has potential clinical applications in combination with other antiviral drugs to suppress HIV-1 mutants. Nevertheless, the development of calanolide A has been delayed due to its low therapeutic index (range: 16–279), non-ideal antiviral activity, and the complexity of its extraction from plants
Status:
Investigational
Source:
NCT03418714: Phase 1/Phase 2 Interventional Completed Drug Effect
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Salvinorin A has been reported to be the most potent naturally occurring hallucinogen, with an effective dose in humans in the 200- to the 1,000-μg range when smoked; it has been reported to induce an intense hallucinatory experience in humans, with a typical duration of action being several minutes to an hour or so. Salvinorin A is a highly selective agonist of the kappa-opioid receptor (KOR) with few off-target effects. It is a potent and selective dilator of the cerebral vasculature, exhibits rapid penetration through the blood-brain barrier, has potent anti-inflammatory properties, and has the ability to preserve neurovascular unit integrity. As such, salvinorin A is an ideal compound for the prevention and treatment of cerebral vasospasm following subarachnoid hemorrhage.